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Introduction

Bacteriophages are probably the most abundant entities in the 
biosphere. The total number of phage particles is estimated to be 
in the order of 1031, 10 times larger than the estimated number 
of bacterial cells on Earth.1,2 Among ~5500 phages examined by 
electron microscopy (EM), ~96% have tails,3 a special organelle 
designed for the host recognition, cell wall penetration, and 
genome ejection into the host. The tailed phages constitute the 
order Caudovirales, which is divided into 3 families: Myoviridae, 
Siphoviridae, and Podoviridae, based on the tail morphology. 
Myoviridae phages (e.g., T4, φ92, φKZ) are characterized by 
long straight contractile tails, Siphoviridae phages (e.g., λ, HK97, 
SPP1, p2, TP901-1) possess long flexible non-contractile tails, 
and Podoviridae phages (e.g., φ29, T7, P22) have short, stubby, 
non-contractile tails (Fig. 1). Of the tailed phages analyzed with 
electron microscopy, 61% belong to the Siphoviridae family, 25% 
to the Myoviridae family, and 14% to the Podoviridae family.3,7

During the past decade or so tremendous progress has been 
made in obtaining 3-dimensional (3D) structures of the phage 
virions and their protein components. Based on the similar folds 
of the structural proteins, most likely all Caudovirales had a 
common evolutionary origin, despite large differences in virion 
sizes and morphology. Their virions are mainly built from similar 
molecular building blocks, via similar assembly pathways. Here 

we describe the structure of Caudovirales phages at a molecular 
level. We emphasize the structural similarity and evolutionary 
relationships between proteins which form the phage virions and 
participate in the virus assembly.

Structure of the Phage Head

Capsids of the tailed phages come in a large variety of 
sizes ranging in diameter from about 400 to 1700 Å.3 Most of 
Caudovirales (75%) examined in the electron microscope3 have 
icosahedral (isometric) capsids, while about 15% of Caudovirales 
(e.g., φ29 and T4) have prolate heads, which are icosahedrons 
elongated along the 5-fold axis coincident with the axis of the 
phage tail. The capsid contains linear double-stranded (ds) DNA 
chromosome which is packaged to a high density of ~500 g/l 
and exerts internal pressure of tens of atmospheres on the capsid 
walls.8-10 The special pentameric vertex of the phage capsids, to 
which the tail is attached, is occupied by a dodecameric portal 
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The tailed double-stranded DNA bacteriophages, or 
Caudovirales, constitute ~96% of all the known phages. 
Although these phages come in a great variety of sizes and 
morphology, their virions are mainly constructed of similar 
molecular building blocks via similar assembly pathways. 
Here we review the structure of tailed double-stranded 
DNA bacteriophages at a molecular level, emphasizing the 
structural similarity and common evolutionary origin of 
proteins that constitute these virions.

Figure 1. Structure of the Myoviridae phage T4 (left), Podoviridae phage 
φ29 (middle), and Siphiviridae phage TP901-1 (right). The left panel was 
reproduced from reference 4, the middle panel from reference 5, and the 
right panel from reference 6.



e28281-2	 Bacteriophage	V olume 4 

protein, also called a connector, which forms a channel for 
genome packaging during the virion assembly and exit during 
the infection process.

Capsid assembly
Caudovirales assemble their capsids with the help of internal 

scaffolding proteins (Fig.  2).11-13 The head assembly typically 
starts at the portal vertex by copolymerization of the scaffolding 
proteins and the major capsid protein leading to formation of 
the capsid precursors called prohead (or procapsid). The prohead 
consists of the portal protein, the internal scaffolding core, and 
the outer major capsid protein shell surrounding the core. In 
comparison to the mature capsid, the prohead has a smaller size, 
a more rounded shape, and a thicker capsid protein shell.14-17 
Most phages encode a separate scaffolding protein which is the 
main part of the internal core. The scaffolding protein ensures 
the correct geometry of the capsid. In its absence the capsid 
protein usually assembles into aberrant structures. Some phages, 
like HK97 and T5, have N-terminal major capsid protein regions 
(called Δ domains), which act as scaffolding proteins.14,18,19 The 
scaffolding proteins show great variability in their sizes and 
amino-acid sequences. For example, the scaffolding proteins 
of the bacteriophages φ29 and P22 have 100 and 303 residues, 
respectively and have no sequence similarity. However, the 
φ29 scaffolding protein20 and the C-terminal part of the P22 
scaffolding protein16,21 contain a similar helix-turn-helix motif, 
which, in the P22 procapsid, interacts with the major capsid 
protein shell and the portal. Apart from the scaffolding protein 
the internal procapsid core may contain several extra proteins. 
For example, the core of the bacteriophage T4 prohead contains, 
in addition to ~580 copies of the scaffolding protein, 7 extra 
proteins with copy numbers ranging from 40 to 370.13,22

Procapsids of many phages (like T4, HK97, φKZ, and λ) 
contain head maturation proteases (serine proteases in case of 
T413,22 and φKZ23) which are activated after prohead assembly 
and degrade the internal core partially or completely. The 
digestion products exit the prohead, freeing the space for the 
genomic DNA. The genome is packaged into the procapsid 
through the portal vertex by a DNA translocation motor, driven 
by ATP hydrolysis.24-27 In some phages, like P22 and φ29, the 
scaffolding protein is not degraded, but removed from the capsid 

intact during the DNA packaging. The scaffolding protein is 
probably pushed out by the entering DNA, and exits the capsid 
via openings in the prohead shell.16 As DNA is being packaged 
the prohead undergoes large structural rearrangement to become 
the mature capsid. The capsid maturation involves reorientation 
and partial refolding of the major protein subunits,14,15 resulting 
in significant increase (by ~50%) of the capsid volume. In phage 
λ the expansion occurs when ~30% of the genome has been 
packaged.28 In phage T4 the expansion can be decoupled from 
DNA packaging.29 Capsids of many phages attach stabilization 
and/or decoration proteins to their outer surface during the final 
stage of maturation (see below).

Once the genome has been packaged, the DNA translocation 
motor is dislodged from the portal vertex. The capsid assembly 
is then finalized by attachment of the head completion proteins, 
which seal the portal gate30 and provide a hub for the tail assembly 
in podophages or a platform for binding of the preassembled tail 
in sipho- and myophages.

Genome packaging
Genomes of Caudovirales range in size from about 15 to 500 

kilo base pairs.2,31,32 DNA of some phages, contains modified 
nucleotides, which helps to protect the genomes against nuclease 
degradation. For instance, chromosomes of T-even phages 
contain glucosylated hydroxymethylcytosine residues.33

DNA of most Caudovirales, as well as herpesviruses, is 
synthesized as long head-to-tail multimers, or concatemers, 
of genome units.24,34 The phage chromosomes are cut from 
the concatemers by the DNA packaging machine, called the 
terminase complex because it creates the termini of the virion 
DNA.24,25,27 The packaging machine of most phages contains 
2 proteins termed the large and the small terminases. Subunits 
of the large terminase, usually contain 2 domains: an ATPase 
domain and a nuclease domain. The large terminase is responsible 
for the DNA cleavage and translocation into the procapsid, while 
the small terminase is involved in the packaging initiation and 
stimulates the ATPase activity of the large terminase.

The first genome packaging cycle is typically started by 
the small terminase which specifically recognizes phage DNA 
and recruits the large terminase to make the initial cut in the 
DNA concatemer. After the cut, the large and small terminase 

Figure 2. Schematic representation of the bacteriophage assembly. Reproduced from reference 11.
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associated with one end of the cleaved DNA concatemer bind to 
the portal vertex of a prohead. The large terminase then starts the 
DNA translocation fueled by ATP hydrolysis. Phage terminases 
are among the strongest and fastest known molecular machines.35 
The T4 packaging motor has an average translocation speed of 
~700 bp/sec, and can achieve rates as high as 2000 bp/sec.35,36 
The motor can exert forces larger than 60 pN to overcome the 
pressure generated inside the capsid by the packaged DNA.9,35 At 
the end of the packaging cycle the large terminase makes another 
cut to separate the packed phage chromosome from the rest of 
the DNA concatemer. The motor/DNA complex then dislodges 
from the filled head and binds to another DNA-free procapsid to 
start the next packaging cycle.

In λ-like and T7-like phages the packaging starts and 
stops at specific sites, called cos or pac.34 In λ-like phages the 
large terminase generates 12-base cohesive ends of the phage 
chromosomes. The T7 chromosomes have blunt ends and are 
flanked by direct terminal repeats (terminal redundancies), 
generated in concert with DNA packaging.

Many phages, like P22, SPP1, use the head-full mechanism 
for packaging termination.34 The first packaging cycle starts at 
a specific pac site and continues until the capsid is full. These 
phages encapsidate more than one complete genome length 
(typically 102–110%), and, therefore, the second DNA cut occurs 
at a non-specific site (beyond the pac sequence). Consequently, 
the following DNA packaging cycles start and end at different 
sites, resulting in encapsidation of different circularly-permuted 
chromosomes with terminal redundancy. Phage T4, which 
also uses the head-full packaging mechanism, has no strict pac 
sequence. The first cut of it’s DNA concatemer can be made at 
different points.37,38

Bacteriophage φ29 synthetize monomeric genomes which 
have covalently linked gp3 proteins attached to the 5′-ends of 
both DNA strands.39 φ29 does not have a small terminase, and its 

large terminase does not have nuclease activity.40 Another unusual 
feature of φ29 is the presence of a viral-encoded structural RNA 
(called p-RNA) which resides between the portal protein and the 
terminase during genome packaging.41

Crystal structures of the small terminases from podophages 
Sf6 (Fig. 3A)42,44 and P22,45 SPP1-like siphophage SF6,46 and a 
T4-like myophage 44RR47 have been determined. Comparison 
of these structures showed that the small terminases have similar 
organization. Their subunits assemble into vase-shaped oligomers 
with 8- to 12-fold rotation symmetry possessing a central pore. 
The small terminases consist of an N-terminal domain, located 
on the periphery of the vase, the central oligomerization domain, 
and the C-terminal domain which form the top of the vase and 
is responsible for interactions with the large terminase. Studies 
of the SF6, T4 and Sf6 small terminases44,46,47 showed that 
the N-terminal periphery region is responsible for binding to 
DNA. In the proposed small terminase-DNA binding models, 
DNA wraps around the side of the small terminase oligomer. 
An alternative way for DNA binding to the small terminases 
would be for DNA to go through the central pore. However it is 
unlikely because the central pores of the SF6 and Sf6 terminases 
are too narrow to accommodate the double-stranded DNA helix. 
Moreover, the small terminases of different phages have different 
oligomeric state suggesting that the number of subunits and 
consequently the diameter of the central pore is not critical for 
the small terminase function.46,47

Structures of the large terminases of phages T4 (Fig.  3B) 
and Sf6 have been determined using X-ray crystallography.48,49 
In addition crystal structures the large terminase nuclease 
domains of the phages SPP1, P22, and a T4-like phage RB69 
are available.48,50,51 The N-terminal ATPase domains of large 
terminases have a classical oligonucleotide-binding fold,52 
whereas their C-terminal nuclease domains have a ribonuclease 
H-like fold.53

Figure 3. Structures of the phage terminases. (A) Ribbon diagram of the small terminase of phage Sf6. Different chains of the small terminase octamer 
are shown in a different colors. (B) Ribbon diagram of the large terminase protein, gp17, of phage T4. The N-terminal ATPase domain of T4_gp17 is sub-
divided into 2 subdomains marked N-subdomain I and II. N-subdomain I is in gold, N-subdomain II is in yellow, and the C-terminal nuclease domain is in 
cyan. (A) was reproduced from reference 42, (B) from reference 43.
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Based on the studies of the T4 large (gp17, 70 kDa) and small 
(gp16, 18 kDa) terminases, and the cryo-EM reconstruction of 
the T4 capsid complexed with the large terminase, a model for 
the packaging initiation and DNA translocation was proposed 
(Figs. 4 and 5).48 In this model, 2 vase-shaped oligomers of the 
small terminase and 2 molecules of the large terminase form a 
packaging initiation complex with the phage DNA concatemer. 
In the initiation complex, the terminase molecules have a 2-fold-
symmetric arrangement that corresponds to the 2-fold symmetry 
of the DNA molecule at the anticipated cleavage site. The 
large terminase molecules make cuts on each strand of DNA 
generating free ends. Then 1 large terminase molecule and 1 
small terminase oligomer, associated with 1 end of DNA, bind 
to a procapsid portal vertex. This process recruits 4 other large 
terminase molecules to form a pentameric DNA translocation 
motor. The large terminase molecules attach to the portal vertex 
by their N-terminal domain in a 5-fold-symmetric fashion, 
suggesting that they interact not only with the 12-fold symmetric 
portal protein but also with the 5 major capsid proteins near the 
portal vertex.

The proposed DNA packaging model48 assumes that during 
the translocation process 5 gp17 molecules sequentially bind the 
DNA and move it into the capsid in 2 base pair steps. Comparison 
of the gp17 crystal structure with the cryo-EM reconstruction of 
the prohead-gp17 complex suggested that the gp17 molecules can 
adopt 2 conformational states: tensed and relaxed (Fig.  5). In 
the tensed state the ATPase and nuclease domains of gp17 are 
in close contact, whereas in the relaxed state they are separated 
by ~7 Å. When ATP binds to one of the gp17 molecules in the 
relaxed state, its affinity to DNA is increased. Then this gp17 
molecule binds to DNA via its C-terminal nuclease domain. 
ATP hydrolysis switches the conformation of the gp17 molecule 
from the relaxed to the tensed state. As a result the C-terminal 
domain moves toward the N-terminal domain and the capsid by 
~7 Å, causing the translocation of 2 base pairs of DNA. As the 
structure of B-form DNA contains 10 base pairs per turn, the 
translocation of 2 base pairs by 1 gp17 molecules brings the DNA 
into register with the adjacent gp17 molecule related by 5-fold 
symmetry. The neighboring gp17 molecule binds to DNA by 
its C-terminal domain to start the next translocation step. After 
release of the ATP hydrolysis products, the gp17 molecules return 
to their relaxed state.

Although the ATPase and nuclease domains of T4 and Sf6 
terminases have similar folds, their relative orientation to each 
other in the crystal structures is different.48,49 Based on the 
crystal structure of the Sf6 terminase, Zhao et  al.49 suggested 
an alternative mechanism for conversion of the ATP hydrolysis 
reaction into the physical motion of DNA. Single particle 
studies of the phage φ29 packaging motor suggest that DNA is 
translocated in 10 base pair bursts of consisting of 4 2.5 base 
pair steps.54 Various DNA packaging mechanisms have been 
proposed to account for non-integer translocation steps for the 
φ29 motor.40,54,55

Structure of the portal protein
The portal protein forms a conduit through which the DNA 

enters the capsid, during the virus formation, and exits, during 

the infection process. The portal protein is an attachment site for 
the DNA-packaging motor, and later for the head completion 
proteins.

The portals of Caudovirales phages and herpesviruses 
are turbine-shaped molecules (Fig.  6) containing a central 
channel for DNA passage (for a recent reviews see refs. 30, 40, 
56, and 58). When in the head the portal proteins are always 
dodecamers. However recombinantly produced portals assemble 
into oligomers of 11 to 14 subunits.59,60 The portal proteins 
show large variability in size and amino-acid sequences. For 
example, the portal subunits of podophages φ29 and P22 have 
molecular weights of 36 and 83 kDa, respectively. The structures 
of the portal proteins from phages φ29,57 SPP1,59 and P2261 
have been determined using X-ray crystallography. Additionally 
the crystal structure of a putative portal protein encoded in 
the Corynebacterium diphtheriae genome has been determined 
(PDB ID: 3KDR). Despite low sequence homology, all these 
proteins have similar folds, suggesting that they have evolved 
from a common ancestor. The surface of the central channel of 
the portals is mainly negatively charged allowing smooth DNA 
passage. The monomer of the portal protein can be divided 
into the clip, stem, wing, and crown regions59 (Fig.  6C). The 
clip region protrudes to the capsid exterior and is involved in 
interactions with the large terminase and later with the head 
closure proteins. The clip is connected to the wing via the stem 
containing 2 long α helices. The wing and crown regions are 
located in the capsid interior and contact the packaged DNA in 
the mature capsids. The sizes of these regions vary significantly 
among the portals. The C-terminal part of the phage P22 portal 
forms a ~200 Å-long coil-coiled tube resembling a rifle barrel57 
(Fig.  6D), which protrudes almost to the center of the phage 
capsid.

Due to the symmetry mismatch between the 12-fold 
symmetric portal and the 5-fold vertex it was proposed that 
the portal would rotate easily with respect to the capsid. In the 
early models of genome packaging, the DNA translocation was 
assumed to be coupled with the portal rotation.59,61 However later 
single-molecule fluorescence spectroscopy of the φ29 portal62 
and studies of the T4 connector non-covalently cross-linked to 
the capsid shell63 showed that the portal does not rotate during 
the DNA translocation.

The portal appears to play a more significant role than that 
of a passive conduit. Point mutations in the SPP1 portal protein 
can affect the initiation of DNA packaging, ATP hydrolysis 
by the large terminase, and DNA translocation, suggesting 
that there is cross-talk between the portal and the terminase 
subunits during packaging.56,59,64,65 Covalent cross-linking of the 
stem helices, belonging to adjacent subunits of the SPP1 portal, 
abolishes packaging, suggesting that relative motion of subunits 
is important for the portal function.66 The SPP1 portal contains 
long tunnel loops which point into the channel and probably 
interact with DNA during translocation. Initially it was proposed 
that these loops grip tightly the DNA and drive it into the capsid.59 
However the analogous loops in the P22 portal are too short to 
grip the DNA.57 Moreover, deletion of the tunnel loops in the 
φ29 portal did not disrupt the packaging, but rather affected 
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Figure 4. A model for packaging initiation by the small terminase (reproduced from ref. 47). Framed area: The small terminase subunits are represented 
in rainbow colors. The N-terminal ATPase domain of the large terminase is colored purple and the C-terminal nuclease domain cyan. (A) Packaging initia-
tion sites on the phage genomic DNA. (B) Two small terminase oligomers bound to the initiation sites. (C) Two large terminase molecules are recruited 
and cleave the DNA backbones associated with the same base pair. The nuclease domain of the large terminase on the left-hand side is obscured by 
the 2-fold related nuclease domain of the large terminase on the right-hand side. (D) Two free ends are generated on the DNA, and further digestion 
is prevented by the small terminase. (E) The initiation complex binds to an empty procapsid. (F) Four more large terminase molecules are recruited to 
assemble the pentameric motor and rapid DNA translocation causes the dissociation of the small terminase.
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the ability of the phage to retain the encapsidated DNA.67 The 
potential role of the tunnel loops in retaining the packaged DNA 
was also observed in the biochemical/bioinformatics study of the 
phage T4 portal.68

Once the phage chromosome has been encapsidated, a signal 
is sent to the motor causing the termination of packaging and 
dissociation of the motor from the portal vertex. In phages that 
use the head-full packaging mechanism (e.g., P22 and SPP1), 
the tightly packed DNA exerts a force onto the portal protein 
inducing conformational changes which are then transmitted to 
the motor.69,70

After the motor is jettisoned and before the closure of the 
vertex by the head completion proteins, the genome is retained 
in the capsid by the portal protein, which probably acts as a valve 
preventing leakage of DNA.59,67 In the φ29 and SPP1 portals the 
tunnel loops might be involved in the DNA retention. In the 
P22 portal the barrel is probably responsible for both the head-
full signaling and the retention of DNA. Indeed, comparison of 
the cryo-EM reconstruction of the P22 capsid69 with the crystal 
structure of the portal57 showed that the packaged DNA induced 
significant conformational changes in the portal resulting in 
compression of the barrel tube. The cryo-EM reconstruction also 

Figure 5. DNA Packaging by the large T4 terminase (reproduced from ref. 48). The figure shows the sequence of events that occur in a single T4 gp17 
molecule during packaging. The gp17 N-terminal subdomain I, subdomain II, and C-terminal domain are represented as green, yellow, and cyan ovals, 
respectively. The 5-pointed stars show the charge interactions between the N-terminal subdomain I and the C-terminal domain. The 4-pointed stars 
show the charge interaction between the N-terminal subdomain II and the C-terminal domain. The flexible linker between N- and C-terminal domains is 
represented by a wiggly cyan line. (A) The gp17 C-terminal domain is ready to bind DNA. (B) The C-terminal domain, when bound to the DNA, brings the 
DNA closer to the N-terminal domain of the same subunit. Conformational change in the N-terminal domain causes Arg162 to be placed into the ATPase 
active center in preparation for hydrolysis. (C) Hydrolysis of ATP has rotated the N-terminal subdomain II by about 6°, thereby aligning the charge pairs 
resulting in an electrostatic attraction that moves the C-terminal domain and the DNA 6.8 Å (equivalent to the distance between 2 base pairs) closer to 
the N-terminal domain and into the capsid. (D) ADP and Pi are released and the C-terminal domain returns to its original position. DNA is released and is 
aligned to bind the C-terminal domain of the neighboring gp17 subunit.

Figure 6. Structures of the portal proteins of phages SPP1 and P22. (A and B) display the top and side views of the SPP1 portal protein dodecamer, 
respectively. (C) Structure of the SPP1 portal protein monomer. (D) Side view of the P22 portal protein dodecamer. (A–C) were reproduced from refer-
ence 56, (D) from reference 57.
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showed the terminus of the genomic DNA entrapped inside the 
compressed barrel tube. The P22 portal barrel probably has extra 
functions in the packaging and ejection processes. Olia et  al.57 
suggested that during packaging, the barrel undulates in a circular 
motion while spooling the DNA outwards, onto the capsid shell, 
in a way reminiscent of a water sprinkler. This allows the capsid 
to be filled with ordered, circumcentric layers of DNA. Another 
proposed function of the barrel is the stabilization of the linear 
momentum of the genome as it exits the capsid during infection.57

Organization of the major capsid protein shell
In the mature Caudovirales capsids, subunits of the major 

capsid protein form pentameric and hexameric capsomers which 
are arranged on the capsid surface in accordance with the quasi-
equivalence principle, proposed by Caspar and Klug.71 However 
immature phage capsids show significant departure from the 
quasi-equivalence and have skewed capsid protein hexamers 
which are 2-fold rather than 6-fold symmetric.14-17 Distance 
between the centers of adjacent capsomers in the mature 
Caudovirales heads is about 140 Å. The arrangement of the major 
capsid protein subunits in the isometric phage heads is determined 
by the triangulation number T, which is equal to the number 
of major capsid protein subunits in the icosahedral asymmetric 
unit. As the icosahedral symmetry has 60 asymmetric units, the 
total number of major capsid protein subunits in the phage head 
equals (60T – 5), where the second term accounts for the absence 
of the major capsid protein molecules in the portal vertex.

The prolate phage capsids are composed of 2 icosahedral caps 
and an elongated midsection. The symmetry of the major capsid 
protein shell in a prolate head is described by 2 triangulation 
numbers: T for icosahedral caps, and Q for the capsid midsection 
(for details see refs. 72 and 73). The total number of the major 
capsid molecules per a prolate head is defined by (30 (T + Q) – 5). 
These formulae assume that the major capsid protein is present 
in all pentameric vertices, except the portal vertex; however some 
phages, like T4, may encode special vertex proteins.74,75

Consistent with the wide range of genome and capsid sizes, 
a large variety of triangulation numbers have been found in 
Caudovirales phages studied by electron microscopy. For example, 
the prolate head of the small podophage φ29 is characterized 
by the triangulation numbers T = 3 and Q = 5,76,77 whereas the 
icosahedral capsid of the giant myophage G has T = 52 symmetry 
(James Conway and Roger Hendrix, unpublished data). However, 
capsids of many well-studied phages, like HK97,78 P22,16 SPP1,79 
λ,80 and T7,81 have T = 7 laevo symmetry.

The major capsid proteins of Caudovirales have a similar 
fold, despite of large divergence in their sequences. The fold was 
first described in the bacteriophage Hong Kong 97 (HK97), for 
which the structure of the capsid was determined using X-ray 
crystallography (Fig.  7).78 Later, the HK97-fold was found all 
Caudovirales, with known 3D structures (for examples see refs. 
16, 75, 77, 80, 81, and 83-85), as well as in herpesviruses,86 and 
bacterial enzyme-packaging compartments, called encapsulins.87

The HK97 major capsid protein, gene product (gp)5, is a 
385-residue molecule, which is proteolytically processed during 
capsid maturation.14 The 103-residue N-terminal region of gp5, 
acting as a scaffold for capsid assembly, is subsequently cleaved 

in the maturation process by a head protease, resulting in a 
282-residue gp5*, which is present in the mature capsid.

The gp5* protein, is an L-shaped molecule containing 2 
distinct domains (Fig. 7A).78,88 In the mature capsid, having T = 
7 laevo symmetry, the protein forms pentameric and hexameric 
capsomers with the axial (A) domains located near the capsomer’s 
axis, and the peripheral (P) domains located on the capsomer’s 
periphery. The A domain contains a 4-stranded β sheet and 2 
helices; and the P domain comprises a 43 Å long “spine” helix 
packed against a 3-stranded antiparallel β sheet. In addition to 
the core formed by domains A and P, the gp5* molecule contains 
a 50 Å-long extended (E) loop, and a 60 Å-long N-terminal arm.

The inter-subunit interactions in the mature HK97 capsid are 
extremely extensive.78,88 Each gp5* molecules is in contact with 9 
other molecules. The N-arm and E-loop of gp5* molecules show 
remarkable acrobatic quaternary associations spanning across 
neighboring subunits within the same capsomer and interacting 
with subunits in adjacent capsomers. The HK97 capsid is further 
stabilized by formation of covalent bonds between gp5* subunits 
belonging to different capsomers. The side chain of Lys169, 
located in the E loop of 1 gp5* subunit, forms the isopeptide 
bond with the side chain of Asn356 located in the P domain of 
another gp5* molecule. Thus each gp5* molecule in the capsid 
is covalently bound to 2 other molecules belonging to different 
capsomers, resulting in 420 isopeptide bonds per capsid. The 
gp5* cross-linking results in the formation of covalently-linked 
protein circles, which, in turn, are organized topologically into a 
chainmail-like structure. Such cross-linking is specific for phage 
HK97 and is not found in other well-studied phages.

Mature Caudovirales capsids have rather thin protein shells 
because their major capsid protein subunits are oriented roughly 
tangentially to the capsid surface. For example, the thickness of 
the HK97 gp5* shell is only 18 Å.78 However the prohead shells 
are thicker than the shell of the mature virus due to roughly radial 
orientation of the major capsid protein subunits. Interactions 
between the major capsid protein subunits are much weaker in 
the prohead compared with the mature capsid. Studies of the 
capsid assembly intermediates of the HK9714,15 (Fig. 7) and P2216 
phages showed that capsid proteins in the prohead and mature 
head have significant differences in their tertiary structure. In the 
prohead, the capsid proteins are in a strained higher energy state, 
characterized by the bent spine helix and the twisted P-domain 
β sheet (Fig. 7D).15,16

The mature capsids protein shells are remarkably stable and 
can sustain high pressure (~60 atm, in case of φ299) created inside 
the head by the encapsulated DNA. Although the core of the 
major capsid protein and its organization into the capsid shell is 
similar in all Caudovirales, many phages have additional domains 
compared with the HK97 core. These domains lying on the 
capsid surface appear in cryo-EM reconstructions as additional 
protrusions (or bumps) compared with the rather smooth HK97 
capsid surface. The extra domains are often involved in inter-
subunit interactions reinforcing the capsid.

For example, the capsid protein of phage P22 has a ~150-residue 
ED (extra density) domain which is inserted into domain A of the 
HK97-like core.16,89 In the capsid this domain is involved in both 
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inter-capsomer and intra-capsomer interactions. The ED domain 
is important for the fold of the capsid protein monomer, and 
also plays an important role during the capsid maturation.89 The 
domain possesses an extended D-loop stabilizing the immature 
and mature capsids through interactions with a neighboring 
capsomer.16

Bacteriophage φ29 capsid protein has an additional C-terminal 
domain with an immunoglobulin (BIG2-like) fold.77 This extra 
domain stabilizes the capsid by bridging neighboring capsomers 
and also provides the attachment sites for the head fibers.77,90

Phage T4 major capsid protein gp23*, and its special 
pentameric vertex protein, gp24*, have a globular (~60-residue) 
domain inserted through the E-loop. This domain probably 
interacts with adjacent molecules, located within the same 
capsomers, thus stabilizing the capsomer structure.75,91

The capsid protein of bacteriophage T7 is made in 2 forms: 
10A and 10B.92 The latter form, has 53 additional residues at 
the C-terminus, and is produced via a translational frameshift. 
About one tenth of the subunits in the heads are of the longer 
protein. The frameshift does not provide additional stability to 
the T7 capsid; however it is conserved in the related phage T3.92

Another strategy for capsid reinforcement is the use of special 
“cement” proteins. An example of such protein is gpD of phage 
λ.80,93 GpD (109 residues) is a monomer in solution, but forms 
trimers when bound to the capsid surface. The gpD trimers sit 

on quasi-3-fold axes reinforcing inter-capsomer interactions. 
The positions of the gpD trimers correspond to the positions of 
the covalent cross-links in HK97. Phage λ capsid lacking gpD 
cannot sustain the pressure of the full-length genome, but can 
pack 82% of the genomic DNA.94

Bacteriophage ε15 has a capsid surface protein gp10 (111 
residues) which staples adjacent capsomers.95 Gp10 molecules 
located near local 2-fold axes form tight dimers, further 
reinforcing the capsid. Gp10 has the jellyroll-like fold, which 
is very common for capsids of icosahedral viruses, but was not 
previously found in Caudovirales capsids.

Phage T4 capsid contains the small outer capsid protein, Soc, 
which binds at the interface between hexameric capsomers and 
clamps 2 capsomers together (Fig.  8).96 Further reinforcement 
of the T4 capsid is provided by trimeric interaction of Soc 
molecules at the quasi-3-fold axes passing between hexameric 
capsomers. The Soc protein is dispensable in normal conditions; 
however it helps to stabilize the capsids against extremes of pH 
and temperature. Both T4_Soc and λ_gpD attach to the capsid 
surface at the final stage of their maturation. All 3 cement 
proteins mentioned above reinforce inter-capsomer interactions. 
However they have different folds and use different sites for 
capsid attachment.

Some bacteriophages contain capsid decorative proteins which 
have marginal effect on the capsid stability and protrude far from 

Figure 7. Structure of the bacteriophage HK97 major capsid protein shell. (A–C) correspond to the mature head. (D–F) correspond to the prohead.  
(A and D) display structures of the capsid protein subunits. (B and E) show entire heads and top views of capsid protein hexamers and pentamers.  
(C) and (F) show side views of capsid protein hexamers. (A) was reproduced from reference 82, (B–F) from ref. 15.



www.landesbioscience.com	 Bacteriophage	 e28281-9

the capsid surface. The example of such protein is the highly 
immunogenic outer capsid protein (Hoc) of T4-like phages 
(Fig. 8). T4 Hoc monomers (404 residues) attach to the capsid 
at the center of each hexameric capsomer with a total of 155 
molecules per capsid.74 Each Hoc molecule contains 4 domains, 
3 of which have immunoglobulin-like folds.97-99 Immunoglobulin 
domains are present on the surfaces of ~25% of Caudovirales100,101 
indicating that these are beneficial for the phage life cycle. 
The presence of a large number of immunoglobulin domains 
probably makes the virion surface “sticky” and help the phage 
to bind reversibly to different surfaces. For example, the phage 
can attach to bacteria (without infecting it) and use it as a vehicle 
to travel to different locations. Immunoglobulin domains may 
also help the virus to bind to surfaces of eukaryotic organisms 
and therefore be advantageous for phages propagating on 
symbiotic bacteria.102 It was recently demonstrated103 that Hoc 
helps the T4 virions to adhere to metazoan mucosal surfaces via 
interactions with mucin glycoproteins. As mucus layers provide 
favorable habitats for bacteria, such attachment likely benefits the 
phage via more frequent interactions with its potential hosts.103 
Furthermore, Barr et al.103 stated that the increased concentration 
of lytic phages on mucosal surfaces provides a metazoan immune 
defense affected by phage lysis of incoming bacterial pathogens.

Other examples of lengthy protruding capsid proteins are 
gp8.5 of phage φ29 (280 residues), and gp12 of phage SPP1 (64 
residues). Unlike Hoc, these proteins are trimeric. SPP1_gp12 
binds at the centers of capsomers,79 while φ29_gp8.5 binds at 
quasi-3-fold positions.77,90

Internal capsid proteins
Most Caudovirales phages contain internal proteins inside 

their capsid. The proteins can be dispersed within the capsid 
interior or form ordered structures which occupy a substantial 
fraction of the capsid volume.104 Some of these proteins (“pilot 

proteins”) are injected into the host cell during infection prior or 
along with the phage DNA.

For example, phage T4 capsid contains ~40 copies of the gpalt 
protein (75 kDa), which are probably located near or on the portal 
protein.13,104 Gpalt is an ADP-ribosyltransferase which modifies 
the host’s RNA polymerase resulting in preferential recognition 
of phage early promoters.105 T4 also contains the gp2 protein, 
which is likely associated with the ends of the phage DNA, 
protecting them from exonucleotic degradation.106 In addition, 
T4 capsid contains more than 1000 molecules of 3 small internal 
proteins (8–20 kDa), which are dispersed within the DNA.13,104 
One of these proteins (IPI) helps to protect the phage genome 
from degradation by the host’s endonucleases.107,108

Capsids of T7-like phages contain internal cores assembled 
on the portal protein.81 The cores have a central channel for 
DNA passage. In T7, the core is composed of 12 copies of 
gp14, 8 copies of gp15, and 4 copies of gp16 (Fig.  9). During 
the infection process these proteins exit the capsid and form 
the extension of the phage tail that spans the host’s membranes 
and the periplasmic space.109 Inside the capsid, the core proteins 
are arranged in 3 layers with 12-, 8-, and 4-fold symmetry, 
respectively. In different phage particles these layers have different 

Figure 8. Structure of the bacteriophage T4 head (T = 13 / Q = 20 symme-
try). (A) Shaded surface representation of the cryo-EM reconstruction74 
viewed perpendicular to the 5-fold axis. The major capsid protein, gp23, 
is shown in blue, the special vertex protein, gp24, is in magenta, Soc is in 
white, Hoc is in yellow, and the portal vertex is in green. (B) Close up view 
of 2 gp23 capsomers corresponding to the rectangle outlined in black 
in (A). One Soc monomer is outlined by a blue ellipse; one Soc trimer is 
outlined by a red circle. The figure was modified from reference 96.

Figure  9. Structure of the bacteriophage T7 internal capsid core. The 
portal protein, gp8, is in red. The core proteins gp14, gp15, and gp16 are 
in green, yellow, and blue, respectively. (A and B) display side views of 
the core. (C and D) show top views of the core layers. (F) displays the top 
view of the portal protein. The figure was reproduced from reference 81.
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combinations of relative orientations, resulting in structural 
polymorphism of T7 virions.81 Therefore the classical cryo-EM 
asymmetric reconstruction, which assumes that all particles have 
identical structures, cannot resolve structural details of the core. 
However, the structure of the core was determined using the 
focused asymmetric reconstruction approach (Fig. 9).81 The axis 
of the core was found to be slightly tilted relatively to the 5-fold 
axis of the capsid. Based on this observation, it was suggested81 
that during DNA packaging the core precesses around the capsid 
axis to assists DNA spooling.

The podophage N4 capsid contains ~4 copies of viral RNA 
polymerase, gp50 (380 kDa). The gp50 protein is injected into 
the host during infection. The cryo-EM studies of N4 virion 
showed that gp50 is localized above the portal protein and forms 
the base of the internal core.110

The capsid of giant bacteriophage φKZ contains a large 
internal protein body which is ~1050 Å long and ~240 Å wide.111 
The axis of the body is tilted by ~22° relative to the phage axis. 
The 2 ends of the internal body are anchored on opposing 
hexameric capsomers on either side of the capsid.111 The inner 
body contains 100–200 copies of each of 5 major proteins, as 
well as a number of minor proteins.104 The axis of the DNA 
spool inside the φKZ capsid appears to coincide with the inner 
body axis,111,112 suggesting that the body plays a role in the DNA 
organization during packaging.

Structure of the packaged DNA
Phage chromosomes are packed to near crystalline density of 

~500 g/l. Asymmetric cryo-EM reconstructions of phage capsids 
are not able to visualize the structure of whole chromosomes, 
suggesting that the path of DNA molecule inside the capsid varies 
among individual phage particles. Full phage capsids, show local 
hexagonal packing of DNA helices with an inter-helix distance 
of 25–28 Å, depending on phage species.113 Several models have 

been proposed for phage DNA organization.104 For the phages 
containing an internal protein core, like T7,81 K1E,84 P-SPP7,114 
the coaxial inverse spool model115 is the most widely accepted 
(Fig. 10A and B). In this model the part of DNA which enters 
the capsid first is located near the capsid protein shell while the 
last portion of DNA is in the central region of the capsid. The 
axis of the DNA spool is aligned with the axis of the capsid core. 
The asymmetric reconstruction of the podophage C1, which does 
not have an internal capsid core, is also consistent with the spool 
model.85 A spool model was also proposed for phage T4, although 
the axis of the spool was perpendicular to the axis of the tail.117

The spool model, however, does not always apply to the capsids 
without internal cores.113 Cryo-EM analysis of T5 capsids showed 
that in the full heads the DNA is organized into a set of hexagonal 
domains separated by defect walls (twist, bent, and dislocation 
walls) to form a 3D lattice (Fig. 10C).113,116 In domains, located 
near the capsid protein shell, the directions of the DNA helices 
are parallel to the capsid walls. The twist walls, separating the 
domains, are generally parallel to the capsid walls, whereas the 
translocation walls are radial to the capsid surface. Analysis of T5 
phages which ejected different parts of their genome showed that 
DNA fills the capsid uniformly irrespective of the length of the 
genome still present in the capsid. During ejection the structure 
of the DNA becomes liquid crystalline and then isotropic.113,116

The head completion proteins
The Sipho- and Myoviridae phages typically contain 2 head 

completion proteins each of which assembles into a ring below 
the portal (Fig.  11).30 In the mature virion the 2 rings are 
sandwiched between the portal protein and the tail. Mutant 
capsids lacking the head completion proteins cannot bind tails 
and lose their DNA. In the Siphoviridae phages SPP1 and HK97, 
the ring closest to the portal is formed by dodecamers of gp15 
(102 residues)118 and gp6 (108 residues),119 respectively. The 

Figure 10. Structure of the packaged DNA within phage capsids. (A and B) Organization of DNA in phage K1E, whose capsid contains an internal protein 
core. (A) displays a 75 Å thick slice containing the central section of the K1E cryo-EM map. Several DNA strands in the outermost layers are marked with 
black dots to emphasize their hexagonal packing. (B) shows the outermost layer of DNA, most proximal to the inner capsid wall. The observed DNA 
pattern is consistent with the coaxial spool model. (C) Organization of DNA in the T5 capsid which does not have the internal core. A cryo-EM image is 
shown of a T5 capsid. The hexagonal DNA monodomains are underlined, and positions of dislocation walls (DW) and twist walls (TW) are shown. The 
scale bar represents 250 Å. (A and B) were reproduced from reference 84, (C) from reference 116.



www.landesbioscience.com	 Bacteriophage	 e28281-11

SPP1_gp15 (Fig.  11A) and HK97_gp6 proteins have a similar 
fold characterized by a 3-helix bundle stabilized by a small 
hydrophobic core. A similar fold was found in the podophage 
P22 gp4 protein which also forms dodecameric rings below the 
portal,57 and in a putative neck protein YqbG, of a Myoviridae 
prophage found in the B. subtilis genome. Hence the helix-bundle 
fold seems to be very common for the phage neck proteins located 
immediately below the portal. However the bacteriophage λ 
protein gpW (68 residues), which had been predicted to bind to 
the portal, has a different fold.120

The family of proteins which form the second ring below the 
portal, that binds to the phage tail, is represented by gp16 of SPP1 
(Fig.  11B, 109 residues),118 gpFII of phage λ (117 residues),121 
and XkdH of the Myoviridae prophage PBSX, found in the B. 
subtilis genome. These proteins have a conserved core formed by a 
β-sandwich. Similar organization of the core was found in a very 
large group of phage tail proteins including the tail-tube and the 
central baseplate proteins (see below), suggesting their common 
evolutionary origin.122,123

The head completion proteins are characterized by the 
presence of large unstructured regions. These proteins are usually 
monomers in solution and do not form complexes when mixed 
with other phage proteins. Oligomerization of these proteins 
in solution may be detrimental for production of infectious 
virions.124 However, the 2 rings of the head completion proteins 
assemble rapidly on the portal vertex after termination of 
DNA packaging, to seal the portal and create the interface for 
tail attachment.30,118,125 The interaction of proteins with other 
proteins within the assembling virion results in the folding of 
unstructured regions. Such conformational switching upon 
binding to assembly intermediates is a common mechanism for 

the control of sequential incorporation of proteins into the phage 
particle.

Lhuillier et  al.118 suggested a mechanism for the viral DNA 
gatekeeping in phage SPP1, in which the premature leakage 
of DNA is prevented by the stopper protein gp16. The central 
channel in the gp16 dodecamer is closed by 12 loops coming 
from different gp16 subunits and forming a parallel inter-subunit 
β-sheet.

Structure of the Phage Tails

Bacteriophage tails are fascinating molecular machines created 
to recognize the host cells, penetrate the cell envelope barrier and 
deliver DNA into the cytoplasm. The Caudovirales tails have very 
different size and morphology with lengths ranging from ~100 
Å, in some podophages to ~8000 Å in some siphoviruses.7,126 The 
Podoviridae tails usually assemble on the capsid portal vertex 
whereas the tails of Siphoviridae and Myoviridae phages assemble 
via an independent pathway and associate with the capsid at the 
final stage of virion assembly.

Long tails of the Siphoviridae and Myoviridae phages
Siphoviridae and Myoviridae tails consist of the tail tip 

complex, which is responsible for the host recognition and 
initiation of the infection process, the tail tube, which makes a 
conduit for genomic DNA, and the terminator proteins, which 
terminate the tail assembly and create the binding interface for 
head attachment (Fig. 12).127,128 The tail of Myoviridae phages also 
contains a contractile sheath surrounding the tail tube.128,129 The 
tail tip complex has different size and morphology in different 
phages. Phages which use protein receptors for cell binding 
usually have conical tail tips (e.g., SPP1130 and λ), whereas phages, 

Figure 11. Structure of the bacteriophage SPP1 tail completion proteins. (A and B) display ribbon diagrams of SPP1_gp15 and SPP1_gp16 proteins, 
respectively. (C and D) show the portal protein (blue) and 2 rings formed by the tail completion proteins below the portal (magenta and green). 
Reproduced from reference 118.
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using polysaccharide receptors usually have elaborate baseplates 
at the distal end of the tail (e.g., lactococcal phages TP901-16,131 
and p2132,133). Furthermore phages usually have side tail fibers or 
spikes, attached to the periphery of the tail tip complex, as well 
as a central tail spike.

In the Siphoviridae and Myoviridae tails, the tail tip complex 
assembles first and serves as a platform for polymerization of 
the tail tube protein subunits. The tail tip complex attaches the 
tape measure, or ruler, protein, which determines the length 
of the tail tube.127,134,135 The tape measure protein is extended 
through the central channel of the tail tube as it is being built. 
The polymerizing tail tube protein molecules form a stack of 
hexameric rings on top of the tail tip complex,136 which encircle 
the tape measure protein. When the end of the growing tube 
approaches the end of the ruler protein, the polymerization is 
stopped by attachment of the hexameric ring of the tail tube 
terminator protein to the top of the tube,136 and, probably, to 
the N-terminal part of the ruler protein. Myoviridae phages 
possess a contractile tail sheath which assembles around the tail 
tube. The polymerization of the tail sheath protein also starts 
at the tail tip complex (the baseplate) and is propagated to the 
end of the tube. The sheath subunits arrange into a stack of 
hexameric rings, rotated relative to each other, thus creating a 
6-start helix.129,137 The polymerization of the sheath is terminated 
by the hexameric sheath terminator protein which binds on top 
of the tail tube terminator and interacts with the last ring of the 
sheath (Fig. 12).4 In the Myoviridae phages the sheath terminator 
protein creates the interface for head attachment, whereas in the 

Siphoviridae phages, which do not have the sheath, the capsid 
binding interface is formed by the tube terminator protein.

The tape measure protein
The tape measure protein is extended along the assembled 

tail tube. The exact stoichiometry of the tape measure protein 
is unknown, although the copy number was estimated to be 6–7 
for phage λ.138 Secondary structure predictions suggest that the 
protein is mostly α-helical through its entire length. The length 
of the tail tube in different phage species agrees approximately 
with the length of the ruler protein if it is modeled as a continuous 
extended helix. During the infection process a signal should 
be transmitted from the tail tip complex to the neck proteins 
to open the portal vertex for DNA exit. As the tape measure 
protein spans the entire tail tube, it is likely to be involved in the 
signal transmission. Alternatively the signal may be transmitted 
through the tail tube protein.130 The tape measure protein should 
exit the tail tube during infection before the DNA is ejected. In 
Siphoviridae phages the tape measure protein may be involved in 
the creation of a channel for DNA translocation through the cell 
wall.127

The tail tube protein
The tail tube proteins usually do not polymerize until they 

encounter the tail tip complex. In solution these proteins typically 
contain many flexible loops, impeding the production of well-
diffracting crystals. The structures of the 2 domains of the tail 
tube protein, gpV, of phage λ were determined using nuclear 
magnetic resonance (NMR) spectroscopy.139,140 The N-terminal 
domain of gpV (gpV

N
, residues 1–160) is necessary and sufficient 

to make the λ tail tube (Fig.  13A),139 whereas the C-terminal 
immunoglobulin-like domain (residues 161–246) plays an 
accessory role, probably helping the virus to attach reversibly 
to different surfaces. The N-terminal domain is composed of 2 
antiparallel sheets, which form a twisted β-sandwich, flanked 
by an α-helix. This structure is similar to the tail tube protein, 
XkdM, from the PBSX prophage of B. subtilis, which encodes 
Myoviridae particles, indicating the common evolutionary 
origin of the Siphoviridae and Myoviridae tail tubes. The gpV 
N-terminal domain is also similar to the tube proteins, Hcps, from 
the bacterial secretion system VI, which is structurally related 
to phage tails (Fig.  13B and C).139,142 The Hcp proteins form 
hexameric rings of ~90 Å external diameter and ~40 Å height, 
with the inner pore having a ~40 Å diameter. These dimensions 
are close to those of the tail tube protein rings in phages, allowing 
modeling of homologous phage tail tube structures.139

The tail tube protein has structural similarity to a large 
family of Siphoviridae and Myoviridae proteins, including the tail 
terminator proteins, the head completion proteins forming the 
head-tail binding interface, and the proteins located in the center 
of the phage baseplate (see below, and refs. 122,123, and 142). All 
these proteins have probably evolved from a common ancestor. In 
phage genomes the genes, encoding these proteins, are usually 
located close to each other suggesting that they appeared by gene 
duplication, followed by mutation and selection.

Unlike most other phages, T5 has a 3-fold- rather than 6-fold-
symmetric tail tube.143 Its tail tube protein is about twice as big 
as other tail tube proteins. Therefore it is possible that the T5 

Figure  12. Schematic representation of a Myoviridae phage tail and 
neck. Siphoviridae phages would be missing the tail sheath (green) and 
the tail sheath terminator protein (red).
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tail tube protein has 2 domains with similar 
folds, and that 3 copies of the protein form 
pseudohexameric rings in the tail tube.127,143 
Such pseudo-hexameric rings are formed by 
the baseplate hub proteins (see below).

The tail terminator proteins
The tail terminator proteins are critical 

components for the phage assembly. Tails 
lacking the terminator proteins cannot 
attach to the heads. In the absence of the 
tail terminator proteins the tail tube (and 
the contractile sheath in Myoviridae phages) 
can polymerize (though at a slower rate) 
beyond the length determined by the tape 
measure protein resulting in aberrant tails 
of different sizes. The structure of tail tube 
terminator protein, gpU (131 residues), of 
phage λ has been determined using NMR 
and X-ray crystallography (Fig.  13D and 
E).136,144 In one of the crystal forms gpU 
forms hexameric rings, as is presumably in 
the phage particle (Fig.  13E). The fold of 
gpU is defined by an antiparallel, 4-stranded 
β-sheet that is decorated on one side by 3 
α-helices.144 Although the overall fold of 
gpU is somewhat different from that of the 
tail tube protein, gpV, a similar portion 
of the tertiary structure was detected in 
both proteins, suggesting their common 
evolutionary origin.122 Myophage T4 has 2 
terminator proteins: gp3, which (like gpU 
of phage λ) stops the polymerization of the 
tail tube, and gp15, which terminates the polymerization of the 
contractile sheath.145 In the T4 virion, gp3 (175 residues) and 
gp15 (272 residues) make hexameric rings, with the gp3 ring 
located on top of the tail tube and the gp15 ring docked on top of 
gp3. Although the gp15 protein is twice as large as gpU of phage 
λ, the structure of the central part of the gp15 hexamer is similar 
to that of gpU.4 In comparison with gpU, the gp15 hexamer has 
additional structural elements located in its periphery, designed 
to interact with the contractile sheath.4

The contractile sheath structure
The bacteriophage T4 tail is the most extensively studied 

contractile system.128,129,137,146,147 The structure of the T4 tail 
before and after contraction has been determined using cryo-EM 
(Fig. 14A and B).137,147 The T4 tail sheath is composed of 138 
subunits of the gp18 protein (659 residues), organized into 
a 6-start right-handed helix. In the extended tail, the sheath 
is ~240 Å wide and ~925 Å long, with the pitch and twist of 
the helix being 40.6 Å and 17.2°, respectively. Because the tail 
tube density is smooth in the T4 cryo-EM reconstructions, it is 
not possible to conclude if it has the same helical symmetry as 
the sheath. The extended sheath represents a metastable high-
energy structure akin to an extended spring. Before and after the 
contraction, the sheath is attached to the baseplate at one end 
and to the neck at the other end. As the sheath contracts the tail 

Figure 13. Tail tube and tail tube terminator proteins. (A) Structure of the N-terminal domain 
of the bacteriophage λ tail tube protein, gpV. This domain is necessary and sufficient for tail 
tube formation. (B) Structure of the tube protein Hcp1 from the bacterial secretion system VI. 
(C) Hexameric ring of Hcp1. (D) Structure of the tail tube terminator protein gpU of phage λ.  
(E) A hexameric ring of gpU. (A and B) were reproduced from reference 139. (C) was reproduced 
from reference 141.

tube (with the cell-puncturing tip) is pushed through the center 
of the baseplate and penetrates into the cell wall. The sheath 
contraction causes dramatic rearrangement of the gp18 subunits. 
Each subunit moves by ~50 Å away from the tail axis and rotates 
by ~45°.128,129,146 The sheath contraction drastically changes the 
environment of gp18 subunits within the sheath, resulting in 
stronger inter-subunit interactions. The contracted sheath has a 
length of 420 Å, and a width of 330 Å. It is also a 6-start helix 
with the pitch and twist of 16.4 Å and 32.9°, respectively.

The T4 tail sheath subunit, gp18, consists of 4 domains. 
The structure of the gp18 mutant containing domains I–III 
has been determined using X-ray crystallography (Fig. 14C).146 
The domain organization of gp18 can be described as a series 
of insertion domains, similar to a set of Russian Dolls. The 
domain I in gp18 is an insertion of domain II, which is itself 
an insertion of domain III, which is an insertion of domain IV. 
Such domain structure suggests that domain IV is the most 
ancient part of the protein and that other insertion domains 
were added later during evolution. Domain IV which is mostly 
composed of the C-terminal part of the protein interacts with 
the tail tube in the extended tail. Domains II and III and IV 
are involved in the interaction with other gp18 subunits within 
the extended and contracted sheath, while domain I is located 
at the periphery of the sheath and is exposed into the solvent. 
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Fitting of the gp18 structure into the cryo-EM reconstructions 
of the extended and contracted tails showed that gp18 subunits 
move as rigid bodies during the tail contraction without 
refolding or significant change in the relative orientations of 
the domains.

Apart from T4 gp18, structures of 2 putative tail sheath 
proteins, DSY3957 and LIN1278, encoded by prophages have 
been determined by a structural genomics consortium.148 Those 
structures contain the C-terminal domain IV, absent in the 
gp18 crystal structure. In addition, a partial structure of the 
tail sheath protein from the giant bacteriophage φKZ has been 
determined.148 Despite the low sequence similarity, these proteins 
have similar structures, indicating that the sheath proteins of 
tailed phages have evolved from a common ancestor. In the 
DSY3957 crystal structure the N-terminal arm (residues 15–25) 
of the protein is a part of a β-sheet in the C-terminal domain of 
a symmetry related molecule. Based on this observation, Leiman 
and Shneider128 proposed that in the phage sheaths such chain 
swapping cross-links neighboring subunits stacked on top of each 
other, thus helping to maintain the sheath integrity.

The phage tail-tip complexes
Bacteriophage baseplates vary in size and complexity. The 

most extensively studied Myoviridae baseplate is that of phage T4 

(Fig. 15A), which is composed of ~140 polypeptide chains of at 
least 16 different proteins (for a recent review see ref. 129). The 
T4 baseplate attaches 6 long tail fibers and 6 short tail fibers to 
its periphery. The long tail fibers, with a length of ~1450 Å, bind 
reversibly to the E.coli lipopolysaccharide (LPS) and/or OmpC 
molecules, and serve for primary host recognition.151 Upon 
binding of the long tail fibers a signal is send to the baseplate 
causing the 6 short tail fibers to extend and bind irreversibly to 
the LPS. On attachment, the baseplate conformation switches 
from the dome-shaped to the star-shaped which, in turn, triggers 
the contraction of the tail sheath. The structures of T4 baseplate 
in the dome-shaped and star-shaped conformations have been 
determined using cryo-EM (Fig. 14A and B; Fig. 15A),137,147 and 
structures of 9 baseplate proteins have been determined using 
X-ray crystallography.129 Comparison of the X-ray structures 
showed that some proteins, located in the T4 baseplate periphery 
(gp10, gp11, and gp12) evolved from a common primordial fold 
via gene duplication,152 suggesting an evolutionary mechanism 
for developing complex baseplates.

Most of the T4 baseplate structure, obeys the 6-fold 
symmetry. However, the central hub of the baseplate is formed 
by the trimeric gp27 protein. The gp27 molecule (391 residues) 
consists of 4 domains, 2 of which have a fold resembling that 

Figure 14. Structure of the bacteriophage T4 tail in the extended (A) and contracted (B) conformations. Constituent proteins are shown in different col-
ors. The contractile tail sheath is shown in green. (C) Structure of the tail sheath protein mutant, gp18M, containing 3 out of 4 domains of gp18. Domain 
I is in blue, domain II is in olive green, domain III is in orange red. Residues 454–470 and the last 27 C-terminal residues of gp18M are shown in cyan.  
(A) was reproduced from reference 137, (B) from reference 147, and (C) from reference 146.
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of the tail-tube proteins (Fig.  15B–D). In the baseplate these 
domains form a pseudo-hexameric ring, analogous to the tail-
tube protein hexamers. The gp27 homologs, forming pseudo-
hexameric rings, were also found in non-contractile Siphoviridae 
tails (see below and ref. 132), suggesting that such a baseplate 
hub structure is common in phages. The gp27 protein binds the 
central tail spike made by a trimer of gp5 protein.153 T4 gp5 (575 
residues) has 3 domains (Fig.  15B). The N-terminal domain 
has an oligosaccharide/oligonucleotide-binding (OB) fold, the 
central domain has a lysozyme-like fold, and the C-terminal 
domain forms an intertwined β-helix. The tip of the gp5 
β-helix is capped by a monomeric protein, recently identified 
as gp5.4 (97 residues), which sharpens the central spike.150 
During the infection process the (gp5)

3
-gp5.4 spike punctures 

the cell membrane and the lysozyme domain of gp5 digests the 
peptidoglycan in the E. coli periplasm.

Similar organization of the central tail spike was observed in 
the bacterial secretion system VI.142,150 This system is responsible 
for translocation of toxic effector molecules, allowing predatory 
bacteria to kill prokaryotic and eukaryotic prey cells. The 
secretion system VI VgrG proteins correspond to both gp27 and 
gp5 of T4, although without the lysozyme domain (Fig. 15E). 
The tip of the VgrG β-helix is capped by a spike sharpening 
protein, characterized by PAAR sequence repeats, and containing 
a zinc atom. In the secretion system VI, the VgrG and/or PAAR-
repeat proteins can be fused with effector domains which have 
cytotoxic effects (Fig. 15E and F).150

The central cell-puncturing spikes of phages P2 and φ92154 
have a structure similar to that of gp5 of T4, without the lysozyme 
domain, although there are differences in how the 3 monomer 
chains intertwine to form the β-helix. The P2 and φ92 phages do 
not encode a separate monomeric protein which binds to the very 
tip of the spike. Instead their gp5 homologs have a C-terminal tip-
sharpening extension characterized by the presence of an iron ion.154

The best studied Siphoviridae baseplates are those of phages 
p2 and TP901-1 infecting Gram-positive Lactococcus lactis.131,132 
Both these phages use carbohydrate molecules as receptors for 
attachment to the host. The p2 baseplate (Fig. 16) is composed 
of 3 different proteins: Dit (ORF15, 298 residues), Tal (ORF16, 
398 residues), and the receptor binding protein (ORF18, 264 
residues).132 The Dit protein forms hexameric rings below the tail 
tube. The central part of the Dit hexamer, made by the N-terminal 
domains (residues 1–132) of 6 monomers, is very similar to the 
tail tube protein hexamers (Fig. 16G). The C-terminal domains 
of 6 Dit molecules, attach trimers of the receptor binding protein, 
resulting in 18 copies of the receptor binding subunits per phage.

The trimeric Tal protein (ORF16) attaches to the bottom 
of the Dit ring. The fold of Tal is similar to that of T4 gp27 
(Fig. 16E, F, and I). Like gp27, the Tal monomer is composed of 
4 domains, 2 of which have the tail-tube-like fold. Contrary to 
T4, the p2 baseplate does not have any central tail spike attached 
to the Tal protein.

The p2 baseplate has 2 conformational states: the “rest” 
state and the “active” state. The switching from the rest to the 

Figure 15. Structure of the bacteriophage T4 baseplate and cell-puncturing device. (A) Cross-section view of the T4 baseplate. Constituent proteins are 
shown in different colors and are identified with their corresponding gene names. (B) Structure of the gp5-gp27 trimer is shown as a ribbon diagram in 
which each chain is shown in a different color. (C) Domains of gp27. The 2 homologous domains are colored in light green and cyan. These domains are 
similar to the tail-tube proteins. (D) The pseudohexameric ring formed by the tail-tube like domains of the gp27 trimer. (E) Schematic representation of 
a spike from the bacterial secretion system VI. The spike consists of the VgrG and PAAR-repeat proteins. (F) Structure of the PAAR-repeat protein. (A) was 
reproduced from reference 149. (B–D) were reproduced from reference 129. (E and F) were reproduced from reference 150.
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active state is triggered by Ca2+ ions, which are mandatory for p2 
infection. In the rest conformation the host-recognition domains 
of the receptor binding proteins point toward the phage head. In 
the presence of Ca2+ the receptor-binding protein trimers rotate 
by ~200°, and acquire the “down” orientation, presenting their 
binding sites to the host. The baseplate activation also results 
in significant conformational changes in the Tal trimer, which 
opens up to allow the DNA passage.132

The baseplate of the phage TP901-1 contains a hexameric ring 
of Dit which attaches 6 trimers of the baseplate upper protein 
(BppU) to its periphery.131 Each BppU monomer, in turn, attaches 
a trimer of the receptor binding protein, resulting in 54 copies of 
the receptor binding subunits per phage. Thus BppU serves as an 
adaptor between Dit and the receptor-binding protein, allowing 
TP901-1 to expose 3 times more receptor-binding molecules on its 
baseplate compared with phage p2. Contrary to p2, the TP901-1 
baseplate does not require activation by Ca2+ ions. It permanently 
stays in the “infection-ready” conformation with the receptor 
binding proteins suitably oriented for attachment to the host 
surface.131 The Dit ring attaches the trimeric Tal protein. The 
TP901-1 Tal, containing 918 residues, is much bigger, compared 
with that of phage p2. The N-terminal part of the TP901-1 Tal is 
similar to that of p2 and to the gp27 protein of phage T4, while 
its C-terminal part forms the central tail spike and contains a 
predicted peptidoglycan-degrading domain.

Proteins analogous to Dit were also found in the Gram-positive 
infecting phage SPP1155 and in the Gram-negative infecting phage 
T5,143,156 which do not possess baseplates, but have tapered tail 

tip complexes. Phage T5 encodes a separate protein analogous to 
p2_Tal and T4_gp27,143,156 which binds to Dit and attaches a long 
central tail spike, whereas phage SPP1 has a Tal/gp27-like region 
at the N-terminus of its central fiber protein.157

The central part of the tail tip complex has a common 
architecture in the long- tailed phages. A hexameric Dit-
like protein, attached to the tail tube, serves as a binding site 
for proteins located at the periphery of the baseplate/tail-tip 
complex. A Tal/gp27-like trimer attaches below the Dit hexamer. 
Two domains of Tal/gp27-like protein form a pseudo-hexameric 
ring, which acts as an adaptor between the 6-fold-siymmetric Dit 
and the 3-fold-symmetric central tail spike.

The accumulated structural data demonstrate that the tail 
tube-like fold is a crucial building block of Siphoviridae and 
Myoviridae virions found in several proteins with different 
functions. The stack of the tail tube-like rings starts with the Tal/
gp27-like protein, continues with the Dit-like protein, then with 
the tail tube, the tail terminator protein(s), and finishes with the 
ring of the head completion protein, on top of the tail. All these 
proteins probably have a common evolutionary origin.122,123

Structure of the peripheral part of the baseplate/tail-tip 
complexes vary in size and complexity, depending on specificity of 
phage-host interactions. However the receptor binding- proteins 
of phages, have common features. They are all trimeric and bind 
the phage through their N-terminal part. The chains of subunits 
in the trimer are usually intertwined. The phage receptor binding 
proteins typically have a high β-structure content, and contain 
β-helical regions.

Figure 16. Crystal structure of the phage p2 baseplate and its components. (A) View of the baseplate surface; ORF15 (Dit) is in green, ORF16 (Tal) is in red, 
and ORF18 (receptor binding protein) is in blue. The blue arrow indicates the position of the quasi 6-fold axis and points toward the rest of the phage 
tail and the capsid. (B) The baseplate has been rotated by 90° around the horizontal axis. The central channel formed by ORF15 hexamer is closed by the 
ORF16 trimeric dome. (C) The arrangement of ORF18 as 6 trimers. (D) Hexameric ORF15 (Dit). (E) Trimeric ORF16 (Tal). (F) View of ORF16 trimer rotated 
180° relative to baseplate (B) with a different color for each subunit. (G) ORF15 hexamer is viewed in the same orientation as in (B). Each subunit, as well 
as the N- and C-terminus domains, have a different color. The central channel is ~40 Å wide. (H) Ribbon view of the ORF15 (Dit) subunit. (I) Ribbon view of 
ORF16 (Tal) subunit. The 4 domains have been identified by D 1 to 4 and different colors of the β-strands. These domains correspond to those identified 
in gp27 from phage T4. (J) Ribbon view of the receptor-binding protein ORF18 trimer, with a different color for each chain. Reprinted from reference 132.
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Organization of the short Podoviridae tails
Three-dimensional structures of several Podoviridae phages 

(φ29,158,159 C1,85 P22,16,160 T7,66,81 ε15,83,95,161 N4,110 K1E,84 K1-5,84 
P-SSP7114) were determined using cryo-EM. Despite variation in 
size and shape, the Podoviridae tails have a common structural 
organization. They contain a central tubular structure to which 
6 or 12 appendages or fibers are attached (Fig. 17). The tubular 
part is typically composed of 2 different proteins. One of these 
proteins, which is bound to the portal vertex, and forms the 
upper part of the tube is usually a dodecamer. The example 
of such protein, for which the X-ray structure is available, is 
gp4 of phage P22 (166 residues).57 The core of the protein is 
formed by a 4-helix bundle and, as mentioned above, is similar 
to the head completion proteins of the long-tailed phages SPP1 
(Fig. 11A), and HK97.118,119 The dodecamers, located below the 
portal vary significantly in size and shape. The P22 gp4 and 
the corresponding protein, gp11 from phage T7 (196-residues) 
form ring-like structures below the portal (Fig.  17A and B), 
whereas the analogous protein, gp11 of phage φ29 is bigger 
(293 residues) and makes a funnel-like structure, termed 
the lower collar (Fig.  17C). However, the similar position of 
these proteins in the virions, the dodecameric state, and high 
predicted α-helical content suggests that the T7_gp11162 and 
φ29_gp11 proteins may be structurally related to P22_gp4 and, 
consequently, to the head completion proteins of the long-tailed 
phages.

The lower part of the tail tube is usually formed by a hexameric 
protein. The example of such a protein is gp12 of phage C1, 
whose structure has been determined by X-ray crystallography.85 
The C1_gp12 (573 residues) protein is composed of 4 domains, 

with the N-terminal domain, binding to the dodecameric upper-
tube protein. The N-terminal domain C1_gp12 (120 residues) 
has a fold similar to the tail-tube proteins of the Siphoviridae and 
Myoviridae phages showing evolutionary ties between the short 
and long phage tails.85

Podophages may contain different proteins bound at the end 
of their tail tubes. For example, phage φ29 has 2 copies of the 
peptidoglycan-degrading protein, gp13 (365 residues) at the very 
tip of its tail.5 Phage P22 contains a 240-Å-long cell-puncturing 
needle, attached to its tail tube (Fig. 17A).164 The needle made by 
the trimeric protein gp26 (233 residues) is mainly a coiled-coil 
structure. A part of the needle is inserted into the tube and serves 
as a plug to prevent a premature DNA leakage.

Trimeric tail fibers or tail spikes attach to the side of the tail 
tube of Podoviridae phages. For example, phage T7 has 6 tail 
fibers,109,162,165 which interact with the 6-fold-symmetric and 
12-fold symmetric tube proteins (Fig.  17B), whereas phage 
φ29 has 12 spindle-shaped tail spikes attached via the 12-fold-
symmetric tube protein (Fig.  17C and D). Usually phage 
infection is initiated by reversible binding of the tail spikes/
fibers to specific host molecules. Many phages use long extended 
glycolpolymers for initial reversible binding. Tail spikes of such 
phages typically have enzymatic activity allowing digestion of 
the glycolpolymers, which helps the phage to move closer to the 
cell membrane. Subsequently the phage binds irreversibly to the 
cell surface with its tail tube properly positioned for infection. 
This irreversible binding triggers conformational changes in the 
virion, eventually resulting in the tail extension and formation 
of a channel between the capsid and the host cytoplasm through 
which the viral genome is injected.109

Figure 17. Tails of Podoviridae phages. (A) Cross-section view of the bacteriophage P22 tail-portal complex. The portal protein (gp1) is in red, the gp4 
dodecamer is in magenta, the gp10 hexamer is in green, the tail spikes (trimers of gp13) are in blue, and the cell-puncturing needle (trimer of gp26) is in 
yellow. The barrel of the portal protein is not shown. Reproduced from reference 160. (B) Cross-section view of the bacteriophage T7 tail-portal complex. 
The portal, gp8, is in dark pink, the dodecamer of gp11 is in blue, the hexamer of gp12 is in cyan, parts of the fibers (gp17) are in gold. Reproduced from 
reference 162. (C) Central section of the bacteriophage φ29 cryo-EM reconstruction. The portal protein, gp10, is in magenta, the lower collar, gp11, is in 
yellow, the knob (gp9, gp13) is in orange. Reproduced from reference 5. (D) Ribbon diagram of the phage φ29 tail spike, gp12. The 3 polypeptide chains 
of the trimer are shown in blue, green, and orange, respectively. The structure contains domain 4 which is removed by an autocatalytic mechanism and 
is not present in the virion. Reproduced from reference 163.
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Structures of the tail spike from Podophages P22,166,167 
φ29,163 HK620,168 K1F,169,170 have been determined using X-ray 
crystallography. They are all trimers with the N-terminal part 
responsible for attachment to the virion. The structures of the 
spikes are dominated by the β-helical fold. The phage φ29 tail 
spike protein, gp12, is synthetized as a 854-residue molecule 
(Fig.  17D). The 163-residue C-terminal domain of φ29_gp12 
acts as a chaperon for trimer assembly, and is subsequently 
removed by an auto-catalytic mechanism.163 The cleaved protein 
consists of 3 domains with the N-terminal domain attached to 
the virion, the second domain responsible for reversible binding 
to and degradation of the cell wall teichoic acids, and the third 
domain responsible for the irreversible attachment to the cell.163 
Binding of the third domains of the tail spikes to cell receptors 
probably fixes the phage particle on the cell wall, so that the tail 
can degrade the peptidoglycan layer with the help of the gp13 
enzyme, located at the tail tube tip. The tail tip then reaches 
the cell membrane, and the phage forms a conduit for genome 
injection.

Conclusion

Due to progress in cryo-electron microscopy and high-
throughput X-ray crystallography, numerous structures of phage 
virions and their protein components have been determined. 
These structures show that tailed double-stranded DNA phages 
have a common evolutionary origin. Their capsids, built of similar 

HK97-like capsid protein folds, contain similar dodecameric 
portals. Caudovirales use similar molecular motors to package 
their genomic DNA. A common fold was also recognized in 
the phage proteins forming rings below the portal vertex. In 
Siphoviridae and Myoviridae phages the tail tube proteins, the 
proteins forming the central parts of the tail tip complexes or 
baseplates, the tail terminator proteins, and the head completion 
proteins that make the tail binding interface, have structural 
similarity and thus have most likely evolved from a common 
ancestor.

Although a great deal of structural data has been 
accumulated on Caudovirales phages, dynamic processes of 
phage absorption to the host and infection are still far from 
being well understood. Future studies are likely to provide more 
structural data on phage-receptor interactions, transmission 
of the infection-initiation signals from the tail tips along the 
tails, and formation of conduits for the DNA injection into host 
cells. Hence structural studies of phages is likely to remain a 
rewarding research topic.
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